Mathématiques

Question

bonjour, je n'arrive pas a résoudre cette exercice je vous met l'énoncer si dessous

Soit la figure ci-contre composée de deux carrés.

L’unité est le centimètre et x >

2

3


1. Expliquer pourquoi x doit être supérieur à 2

3

.


2. Exprimer l’aire du polygone BCDEFG en fonction de

x.

3. Développer et réduire cette expression.

4. A partir de l’expression trouvée à la question 2,

donner la forme factorisée de l’aire du polygone

BCDEFG.

merci beaucoup a la personne qui arrivera a m'aider.
bonjour, je n'arrive pas a résoudre cette exercice je vous met l'énoncer si dessous Soit la figure ci-contre composée de deux carrés. L’unité est le centimètre

2 Réponse

  • Réponse :

    1) si x=2/3 ED=3*2/3 + 1 = 3

    hors AB = 3

    si x=2/3  ED n'existe pas ,il est confondu avec AB

    2) (3x+1)²-3²

    3) 9x²+6x+1-9=9x²+6x-8

    4) (3x+1-3)(3x+1+3)=

    (3x-2)(3x+4)

    Explications étape par étape

  • Réponse :

    l'unité est le centimètre  et  x > 2/3

    1. Expliquer pourquoi x doit être supérieur à 2/3

    soit  la longueur du côté du grand carré  :  3 x + 1

           //      //           //    //     //   petit    //       : 3

    Donc  3 x + 1 - 3 =  3 x - 2  comme une longueur est toujours positive

    donc  3 x - 2 > 0  ⇔ x > 2/3

    2) exprimer l'aire du polygone BCDEFG  en fonction de x  

              A = (3 x + 1)² - 3²

    3) développer et réduire cette expression

             A = (3 x + 1)² - 3²

                = 9 x² + 6 x + 1 - 9

                = 9 x² + 6 x - 8

    4) donner la forme factorisée de l'aire du polygone

             A = (3 x + 1)² - 3²

                 = (3 x + 1 + 3)(3 x + 1 - 3)

                 = (3 x + 4)(3 x - 2)

    Explications étape par étape