Bonjour, j'ai besoin d'aide : Un industriel est spécialisé dans la fabrication de pieds de lampes. Il crée un nouveau modèle sous la forme d'une sphère tronquée
Mathématiques
phoebemontreuil
Question
Bonjour, j'ai besoin d'aide :
Un industriel est spécialisé dans la fabrication de pieds de lampes.
Il crée un nouveau modèle sous la forme d'une sphère tronquée.
La sphère a pour centre I et pour rayon r = 10 cm . [LL') est un diamètre
de la sphère. H est un point de [LL '] tel que IH = 8 cm . Un plan passant
par H et perpendiculaire à [LL'] coupe cette sphère. M est un point de la
section.
1) Quelle est la nature de la section ?
2) Dessiner en vraie grandeur le triangle IHM (dans son plan vu de face).
3) Calculer HM.
Un industriel est spécialisé dans la fabrication de pieds de lampes.
Il crée un nouveau modèle sous la forme d'une sphère tronquée.
La sphère a pour centre I et pour rayon r = 10 cm . [LL') est un diamètre
de la sphère. H est un point de [LL '] tel que IH = 8 cm . Un plan passant
par H et perpendiculaire à [LL'] coupe cette sphère. M est un point de la
section.
1) Quelle est la nature de la section ?
2) Dessiner en vraie grandeur le triangle IHM (dans son plan vu de face).
3) Calculer HM.
1 Réponse
-
1. Réponse Victoria7718
Réponse :
Bonsoir
1)Nature de la section:La section d’une sphère par un plan est un cercle.Par conséquent, la section de la sphère par le plan passant par H etperpendiculaire à [LL’] est le cercle de centre H et de rayon HM.
2)Nature du triangle IHM:Le triangle IHM est rectangle en H.
3)On en déduit HM:D’après le théorèmede Pythagore appliqué au triangle IHM rectangle en H, on a:IM² = IH² + HM²M appartient à la section donc à la sphère, donc [IM] est un rayon de la sphère.10² = 8² + HM²
HM² = 100 –64
HM² = 36{HM > 0}
HM = [tex]\sqrt36[/tex]
HM=6cm