Mathématiques

Question

Bonjour,
Je besoin d’aide pour cette exercice là.
Merci d’avance s’il vous plaît
Exercice 1:
1. Prouver que, pour tout nombre réel x, 4x² - 44x + 112 = 4(x - 4)(x – 7).
2. On considère le triangle ABC rectangle en A tel que :
AB= 1 + x
AC = 20 - 2x
BC = 17 - x
avec x est R+ (nombre réel).
Quelle est ou quelles sont les valeurs possibles de x ? Justifier.

1 Réponse

  • Bonjour,

    1. Prouver que, pour tout nombre réel x, 4x² - 44x + 112 = 4(x - 4)(x – 7).

    4(x - 4)(x – 7)= 4(x²-4x-7x+28)= 4(x²-11x+28)= 4x²-44x+112

    2. On considère le triangle ABC rectangle en A tel que :

    AB= 1 + x

    AC = 20 - 2x

    BC = 17 - x

    avec x est R+ (nombre réel).

    Quelle est ou quelles sont les valeurs possibles de x ? Justifier.

    Trace à main levée, le triangle ABC rectangle en A, puis utilise le th de Pythagore, on a:

    BC²= AB²+AC²

    (17-x)²=  (1+x)²+ (20-2x)²

    289-17x-17x+x²= 1+x+x+x²+400-40x-40x+4x²

    x²-34x+289= x²+2x+1 + 4x²-80x+400

    x²-34x+289= 5x²-78x+401

    x²-34x-5x²+78x= 401-289

    -4x²+44x= 112

    -4x²+44x-112= 0   voir l'énoncé

    4x²-44x+112= 0

    4(x-4)(x-7)= 0

    x-4= 0  ou   x-7= 0

    x= 4             x= 7

    les valeurs possibles de x sont: x= 4 ou x= 7.

Autres questions